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Extensive band structures have been computed for periodic arrays (in the
honeycomb structure) of rigid metallic rods in air. Multiple complete acoustic stop
bands have been obtained within which sound and vibrations are forbidden. These
gaps start opening up for a filling fraction fe 8% and tend to increase with the
filling fraction, exhibiting a maximum at the close-packing. A tandem structure
has also been proposed that allows an ultrawideband filter for environmental or
industrial noise to be achieved in the desired frequency range. This work is
motivated by the recent experimental observation of sound attenuation on the
sculpture by Eusebio Sempere, exhibited at the Juan March Foundation in
Madrid [21] and complements the corresponding theoretical work [22, 23].
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1. INTRODUCTION

Once in a while a topic emerges that has a universal appeal. Such is the case with
periodic dielectric structures becoming known as photonic crystals [1, 2]. Photonic
crystals can be used to manipulate the path of light, and promise to be as
important to the design of optical devices as semiconductors were to the
development of electronic devices. The exotic properties (and their consequences)
of these materials are thought to arise from multiple reflections at the periodically
distributed scatterers, which add up to prevent light from propagating over a wide
range of frequencies. Within such a forbidden band of frequencies (also called
band gaps or stop bands), optical modes, spontaneous emission, and zero-point
fluctuations are all absent. Because of its promixed ability to influence
spontaneous emission and to pave the way to light localization [3], the pursuit of
photonic band gaps has been the major motivation for studying photonic crystals.
Photonic crystals consist of periodically modulated dielectric materials with
periodicity on the scale of the wavelength of light. This constitutes an important

† Permanent address: Institute of Physics, University of Puebla, P.O. Box J-48, Puebla 72570,
Mexico.

0022–460X/98/490697+13 $30.00/0 7 1998 Academic Press



. .   . -698

regime of mesoscopic physics with exciting new technological applications, which
is just beginning to be explored.

Analogies between subfields of physics have almost always opened amazingly
fruitful avenues in research. An exciting example is the recent upsurge in the
growing interest in analogous investigations on phononic crystals [4–16]. These are
two- and three-dimensional periodic elastic/acoustic composites which can exhibit
complete acoustic stop bands. The term complete refers to the gap which exists
independent of the polarization of the wave and its direction of propagation. In
analogy to the photonic crystals, the prime interest of the band theorists was
focused on the existence of spectral gaps in periodic systems and mobility gaps
in disordered systems. Within a complete acoustic band gap, sound, vibrations,
and phonons are all absent. This is of interest for applications such as acoustic
filters, improvement in the design of transducers, and noise control [3]; as well as
for pure physics concerned with the Anderson localization of sound and vibrations
[17, 18]. Piezoelectric, pyroelectric, and piezomagnetic composites are already
known to have long standing applications as medical ultrasonics and naval
transducers, as well as for related tasks in medical imaging [19, 20]. Such
composites were initially fabricated for sonar applications and are now widely used
for ultrasonic transducers.

It is interesting to remark that in all artificial periodic structures—dielectric
composites, elastic composites, magnetic composites, etc.—the existence of
complete gaps is attributed to the joint effect of the Bragg diffraction and the Mie
scattering. The destructive interference due to Bragg diffraction accompanied by
the Mie resonances due to strong scattering from individual scatterer is the
conceptual base of the complete gaps. The latter becomes effective when the
dimension of the scatterers is close to an integer multiple of wavelength [3].

In the quest for achieving complete gaps one must resort to the band structure
calculations. These have been performed for several geometries of periodic elastic
composites and for various types of waves [4–16]. One-dimensional (1D) periodic
systems (superlattices, for example) allow longitudinal, transverse, and mixed
modes. Two-dimensional (2D) composites permit the propagation of pure
transverse and mixed modes independently; no longitudinal modes are possible,
however. In three-dimensional (3D) composites the longitudinal and transverse
modes are strongly coupled, thus complicating the nature of the eigenmodes and
the corresponding computation. A drastic simplification arises in the case of
liquids and gases, which support only dilatational (acoustic) waves. In what
follows we will be concerned with such a single polarization of dilatational waves.

The present work is motivated by the recent experimental measurements of
sound attenuation on the sculpture, by Eusebio Sempere, exhibited at the Juan
March Foundation in Madrid [21]. It consists of a periodic distribution of hollow
stainless steel cylinders, with diameter of 2·9 cm and a unit cell of edge 10 cm. The
cylinders are fixed on a circular platform (4 m in diameter) which can rotate on
a vertical axis. The sound attenuation was measured in the outdoor conditions for
the wave-vectors perpendicular to the cylinders’ vertical axis. The sculpture thus
corresponds to a cermet topology with a volume fraction occupied by the
scatterers of 0·066 and a sound-speed ratio of 17·9. The experimentalists’
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speculation, based on their observation, was that the sound attenuation peak at
1·67 kHz could be ascribed to the formation of the first (i.e., the lowest) gap in
this sculpture. We call attention to the two important points: first, the sculpture
represents a 2D periodicity in the x–y plane (provided the cylinders’ vertical axis
is presumed to be along the z-axis); second, the sculpture consists of finite (in
length) cylinders and is not strictly periodic (in the sense that it does not extend
infinitely in the x–y plane).

This experimental finding was soon followed by a rigorous theoretical
investigation enmbarking on the ideal situation and employing the actual
experimental parameters (we refer to the true dimensions of the sculpture) [22–24].
The complete band structure and density of states (DOS) were computed for an
ideal 2D periodic system to draw the following conclusions. It was found that for
the experimental situation (i.e., for the cylinders 2·9 cm in diameter and
system-period of 10 cm implying to the filling fraction f=0·066) there is no
acoustic gap for frequencies below 6·4 kHz. However, the DOS reveal prominent
minima at 1·7 and 2·4 kHz. These frequencies do agree with those of the first two
attenuation maxima in reference [21], and are indeed related to the diffraction from
[100] and [110] planes (i.e., the X� and M� high symmetry points in the Brillouin
zone). Thus, even with idealization, Sempere’s sculpture was seen to exhibit only
pseudogaps—not full gaps. We refer the readers to references [23, 24] for other
details regarding the circumstances where such a sculpture could exhibit complete
gaps. It is noteworthy that the term complete was reserved in the sense that both
experiment and theory ignored the possibility of filtration of sound along the
vertical axis of the cylinders.

In this work, a 2D honeycomb (or hexagonal) structure consisting of rigid
metallic (for example, stainless steel) rods, in a rarer medium (for example,
air)—analogous to Eusebio Sempere’s sculpture is considered. In a sense, this
complements the previous work on 2D periodic systems in references [22, 23] to
investigate whether or not there could exist a complete gap in the 2D systems with
a honeycomb structure. It has been found that the honeycomb structure can give
rise to genuine multiple stop bands, whose frequency range can be raised (lowered)
by decreasing (increasing) the period of the system. The details of the theory of
band structure for elastic/acoustic composites of arbitrary periodicity and
inhomogeneity can be found in reference [8]. However, the methodological details
needed to accomplish the problem at hand are described succinctly in the following
section.

2. FORMALISM

A 2D periodic system made up of infinitely rigid metallic rods in air—with
honeycomb structure—is considered. The assumption of infinite rigidity means
the modulus of compressibility of the inclusions is infinite. However, in order to
keep the usual speed of sound, it is assumed that the density of the inclusions is
also infinite. This hypothesis, which is very well justified for the metallic (for
example, stainless steel) inclusions in air, then implies that the sound does not
penetrate such inclusions and hence the propagation is confined and predominant
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only in the air. In other words there is no communication between the air inside
and outside. Then it really also does not matter whether these inclusions are hollow
or solid within.† Therefore, the calculation at hand simplifies considerably because
the transverse speed of sound ct is zero in gases (and liquids). Nevertheless, the
ordinary wave equation is inapplicable to the inhomogeneous media. The correct
wave equation—simply the equation of motion in the absence of an external
force—is

r
12u
1t2 =9(rc2

l 9 · u), (1)

where r(r) is the mass density and cl (r) is the longitudinal speed of sound. Only
if rc2

l is independent of the position, do all the three components of u(r, t) satisfy
the ordinary wave equation. In the general case, one observes, from equation (1),
that 9×(ru)=0. Hence, it is possible to define a scalar potential F(r, t) such that
ru=9F. Then equation (1) may be cast in the form

(C11)−1 12F

1t2 =9 · (r−19F), (2)

where C11 = rc2
l is the longitudinal elastic constant. Taking advantage of the 2D

periodicity, the quantities r−1(r) and C−1
11 (r) in the Fourier series are expanded

r−1(r)= s
G

s(G) eiG · r, C−1
11 (r)= s

G

z(G) eiG · r, (3)

where G and r are the 2D reciprocal and direct lattice vectors. The solution of
equation (2) is given by means of the Bloch theorem:

F(r, t)= ei(K · r−vt) s
G

FK(G) eiG · r. (4)

Here K is a 2D Bloch vector. With the aid of equations (3) and (4), equation (2)
yields an infinite set of equations for eigenvalues v(K) and eigenvectors FK(G):

s
G'

[s(G−G')(K+G) · (K+G')− z(G−G')v2]FK(G')=0. (5)

This equation is applied to a 2D periodic system of circular inclusions (medium
i) in a background (medium b); the filling fraction of the metallic rods is f. The

† The authors thank one of the referees who warned that the assumption of infinite rigidity may
break down if tried to approximate an array of hollow tubes having an in-band resonance. He
suggests that there the large monopole amplitudes could filter to the exterior tube walls and hence
alter the acoustic field substantially.
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corresponding densities (elastic constants) are ri , rb (C11i , C11b ). Then it is a simple
matter to show that [8]

s(G)=6r−1
i f+ r−1

b (1− f)0 r−1,
(r−1

i − r−1
b )F(G)0D(r−1)F(G),

for G=0,
for G$ 0,

(6)

where the structure factor F(G) is given by

F(G)=
1
Ac gi

d2r e−iG · r =2fJ1(Gr0)/(Gr0), (7)

where J1(x) is the Bessel function of the first kind of order one, Ac is the area of
the unit cell, the integration is limited to a cylinder of radius r0, and the filling
fraction

f= pr2
0 /Ac =

2p

z3
(r0/a)2, (8)

where a is the period (or lattice constant) of the system. An equation analogous
to equation (6) can be written for z(G) in terms of C−1

11 . Then equation (5) can
be cast in the form

s
G'$G

F(G−G')[D(r−1)(K+G) · (K+G')−D(C−1
11 )v2]FK(G')

+ [r−1=K+G=2 −C−1
11 v2]FK(G)=0. (9)

Interestingly, this eigenvalue equation for dilatational modes is formally the same
as the eigenvalue equation for transverse modes in the corresponding solid
composites with 2D periodicity (see, for example, equation (6) in reference [6]).
It is not difficult to rewrite equation (9) in the form of a standard eigenvalue
problem [8], which is in fact performed at the computational level. Doing so
ensures a drastic saving in computational time.

For the purpose of computation, the number of plane waves was limited to 169.
This resulted in reliably very good convergence; at least up to the lowest 20th
bands. By increasing the number of plane waves to 441, our results change, after
the 20th band, by less than 1%. This emboldens our confidence in the adequacy
of our results based on the 169 plane waves, particularly in the low-frequency
regime where the complete stop bands were found.

Note that our numerical results, presented in the following section, correspond
specifically to the composite system made up of stainless steel inclusions in air.
However, the results remain quite unaltered as long as the assumption of infinite
rigidity prevails (see above). This is clearly an artifact of the huge contrast in the
material parameters of the inclusions and the background.
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3. RESULTS AND DISCUSSION

Figure 1 depicts the first Brillouin zone for the honeycomb (hexagonal) structure
which is of immediate concern for the work reported in this paper.

Figure 2 illustrates the band structure and the density of states (DOS) for rigid
rods in the hexagonal structure; for a filling fraction of f=0·55. The lowest ten
bands are shown. The plots are rendered in terms of the eigenfrequency
n=V(c̄l /a) [where a is the lattice constant, V is the dimensionless frequency, and
c̄l =z(r−1/C−1

11 )] versus the dimensionless Bloch vector k=Ka/2p. The left part
of the triptych represents the band structure in the three principal symmetry
directions, letting k scan only the periphery of the irreducible part of the first
Brillouin zone (see shaded region in Figure 1). The middle part is the result of an
extensive scanning of =k= in the irreducible part of the Brillouin zone—the interior
of this zone and its surface, as well as the principal directions shown in the left
part of the figure. Each curve here corresponds to some direction of k. The DOS
in the right part of the triptych has been calculated on the basis of the scanning
in the middle part, which corresponds to 1326 k-points within the irreducible part
of the first Brillouin zone. The three parts of the triptych in Figure 2 together
demonstrate that there are, indeed, four genuine complete gaps (the shaded
regions) and such calculations are considered as essential. It should be pointed out
that the third band is almost a flat line (with vanishing group velocity) and thus
remains indiscernible from the upper edge of the first hatched region. This remark
should avoid any confusion the reader may have about the spatial positions of the
gaps as explained next. Out of these the first gap is defined by the maximum
(minimum) of the second (third) band at G(J) point, the second one by the
maximum (minimum) of the sixth (seventh) bands at J(G) point, the third one by
the maximum (minimum) of the seventh (eighth) bands at J point, and the fourth
one by the maximum (minimum) of the ninth (tenth) bands at G point. As such,

Figure 1. The first Brillouin zone of the honeycomb structure showing the symmetry points and
axes.
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Figure 2. Acoustic band structure and density of states for a 2D array of rigid metallic rods in
air. The plots are rendered in terms of the frequency n=V(c̄l /a) [where a is the lattice constant, V

is the dimensionless frequency, and c̄l =z(r−1/C−1
11 )] versus dimensionless Bloch vector k=K a/2p.

The filling fraction is f=0·55 and the period is a=10 cm. The triptych is comprised of three parts.
In the left panel, the band structure is plotted in the three principal symmetry directions, letting the
Bloch vector k scan only the periphery of the irreducible part of the first Brillouin zone. The middle
panel demonstrates a novel way of plotting the eigenvalues as a function of =k=; i.e., the distance of
a point in the irreducible part of the Brillouin zone from the G point. The right panel illustrates the
DOS. Attention is drawn to the four complete stop-bands (hatched region) extending throughout
the Brillouin zone. Note that the third band is almost a flat line and remains indiscernible from the
upper edge of the first hatched region that refers to the first gap.

the first and second (third and fourth) gaps are indirect (direct) ones in the
language of solid state physics.

Next we plot the gap-widths of the four existing stop bands within the first ten
bands in the honeycomb structure in Figure 3. The size of a complete gap is usually
expressed as the ratio of the gap-width and the midgap frequency. The gap-width
on the y-axis represents just a difference in frequencies of the top and
bottom of the stop bands, for a given filling fraction. As seen from the figure, the
filling fraction must exceed a certain minimum value, fmin , for a gap to be opened.
This leads us to infer that there is no band gap for fmin E 0·08. Except for the third
gap which opens in a very narrow range of filling fraction (0·53E fE 0·56), the
rest of the three gaps observe a maximum and a minimum before the close-packing
(i.e., when the cylinders start touching each other). It is interesting to note that
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at f=40% there are no gaps opening up in the system, just as for fE 8%. All
the three gaps, which open over a wide range of filling fraction, observe a second
maximum at the close-packing where the band structure reveals flat, degenerate
bands depicting huge stop bands. This is quite easy to understand. In the limit of
close-packing, the resultant 2D periodic system allows almost exactly isolated
vortices and hence the sound cannot spin around the rigid cylinders.

Finally, the fabrication of a multiperiodic system in tandem that could be
designed so as to give rise to wider stop bands in the desired frequency range is
proposed. The band-gap edges of the lowest stop band are computed as a function
of the filling fraction for a large number of systems with different periods (the
lattice constants). The numerical results of such investigations are illustrated in
Figure 4. The ‘‘wedges’’, labelled 1 to 9, correspond to different periods (in the
increasing order from top to bottom) and are based on the numerous band
structure calculations—one for every value of the filling fraction f. These are really
eigenvalue problems for the reduced frequency V as a function of the Bloch vector
k scanned in all directions. It is important to note here (and, in fact, throughout
this paper) that the eigenfrequency n is inversely proportional to the period of the
system. That means that, given the specific medium in the background, the

Figure 3. Gap-widths of the existing four stop-bands versus filling fraction for a 2D array of rigid
metallic rods in air. The period of the system (i.e., the lattic constant) a=10 cm. The vertical dotted
line refers to the close-packing value (f=0·9068). Evident is the fact that there is no acoustic
stop-band for fE 8%. The numbers 1 to 4 refer to the lowest, second lowest, third lowest and the
uppermost (fourth) gaps in Figure 1.
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Figure 4. Design of an ultra-wide-band filter corresponding to the lowest stop band in Figure 1.
Inset: schematic of the cross-section of tandem structure of (periodic) 2D arrays of rigid metallic
rods in the honeycomb structure—what is shown is the front of a face of a unit cell of an individual
periodic system. The ‘‘wedges’’ numbered 1–9 correspond, respectively, to the periods of 6·51, 7·24,
8·06, 8·98, 10·0, 11·13, 12·39, 13·80 and 15·37 cms. Each of the nine sets produces a stop band, whose
upper and lower edges are plotted as a function of the filling fraction f. For f=0·55 (vertical · · · ·
line), the nine stop bands join precisely so as to form a ‘‘super stop band’’ within a frequency range
between 1·99 and 5·23 kHz (see the bold vertical frequency bar between the two horizontal dotted
lines). The vertical – – – line refers to the close-packing value f=0·9068. This is the most convenient
way of demonstrating the existence of stop-bands in a given periodic system.

frequencies of a ‘‘wedge’’ for a period of 1 cm will be 10 times higher than those
of a ‘‘wedge’’ corresponding to a period of 10 cm. Consider two dots on ‘‘wedge’’
no. 1 for a filling fraction f=0·55. The dots mark the upper and lower edges of
the stop band in the band structure and the vertical distance between them is the
width of the stop band. Now the ratio of the two frequencies (specified by the dots)
is calculated and the next ‘‘wedge’’ no. 2 is created such that its upper edge (at
the same f) crosses the lower edge of ‘‘wedge’’ no. 1. The same procedure is
repeated for all the nine ‘‘wedges’’ depicted in Figure 4. In fact, we start with
‘‘wedge’’ no. 5 that corresponds to a period of a=10 cm. The optimum situation
is embarked on, which refers to the lesser possible number of periodic composites
and the smaller possible filling fraction—the former point concerns the cost and
the latter hints to eventually avoiding construction of a wall of rigid cylinders. The
filling fraction f=55% is appealed to, where only nine 2D periodic composites
in honeycomb structure are enough to guarantee a ‘‘super stop band’’ from 1·99
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Figure 5. The same as in Figure 4, but corresponding to the second lowest stop band in Figure
1. The ‘‘wedges’’ numbered 1–9 correspond, respectively, to the periods of 6·00, 6·82, 7·74, 8·80,
10·00, 11·36, 12·90, 14·66 and 16·65 cm. For f=0·55 (the vertical dashed line), the nine stop bands
join precisely so as to form a ‘‘super stop band’’ within a frequency range between 3·48 and 11·00 kHz
(see the bold vertical frequency bar between the two horizontal dotted lines).

to 5·23 kHz. The range of the ‘‘super stop band’’ is highlighted by a bold vertical
frequency bar in Figure 4. Within the ‘‘super stop band’’ the multiperiodic system
(designed in tandem) stands still and total silence reigns. By this we mean that if
one tries to transmit a wide-band wave through the tandem structure one will
achieve a zero transmission within the range of the ‘‘super stop band’’. The
completeness of such a ‘‘super stop band’’ is promised due to the overlapping of
the individual stop bands in the neighboring composites. However, the frequency
range of such a ‘‘super stop band’’, as mentioned above, is at the will of the
designer—by increasing (decreasing) the period of the composites one can lower
(raise) the frequency range of the stop bands and hence of the ‘‘super stop bands’’.

Note that the second lowest stop band in Figure 1 is the largest one in the range
of filling fraction defined by 0·45E fE 0·60. Figure 5 illustrates the design of an
ultra-wide-band filter corresponding to the second lowest stop band in Figure 1.
The scheme of designing such a filter is the same as outlined in the preceding
paragraph. We focus at the same filling fraction (f=0·55). As it is evident,
the tandem structure in this case gives rise to a ‘‘super stop band’’ that
ranges from 3·48 to 11·00 kHz. The rest of the discussion related to Figure 4 is
still valid.
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4. SUMMARY

To conclude, using simple mathematical tools employing the theory of elasticity,
it is demonstrated that the 2D periodic system of rigid metallic rods in the
honeycomb structure can give rise to complete stop bands. It is observed that a
minimal filling fraction f1 8% is needed for the obtention of the lowest forbidden
frequency band. The 2D tandem structures proposed here could be designed to
achieve large ‘‘super stop bands’’ within the desired frequency range. The
frequency range of such ‘‘super stop bands’’ can be raised (lowered) by decreasing
(increasing) the period (or lattice constant) of the constituent systems. In analogy
to the photonic and phononic cases, within the frequency range of stop bands
sound and vibrations would be forbidden. Thus, a small vibrator (or defect)
introduced into an otherwise periodic system would remain unable to generate
sound within the gaps. The weakly disordered system should, on the contrary,
exhibit localized modes within the gaps. The existence of complete stop bands is
thus closely associated with the Anderson localization of sound and vibrations.

It is noteworthy that the existence of a complete gap in these ‘‘phononic
crystals’’ guarantees the perfect reflection (and hence no transmission) of the
excited acoustic wave within the frequency range of the stop band. But this does
not mean that the intensity of the backscattered part of the incoming wave
vanishes. The technological interest behind fabricating such ‘‘phononic crystals’’
is to enable the medium to prohibit the incoming wave within a desired (or
tailor-made) forbidden frequency range. Consequently, such periodic composites
that exhibit complete stop bands can behave as acoustic filters that prohibit sound
propagation at certain frequencies while allowing practically free (provided that
the absorption is scaled down to a minimum) propagation at others.

Comparing the present results with those on the 2D square lattice systems [21],
it is found the magnitudes of the gaps are larger and the range of the filling
fractions over which such gaps exist are wider in the honeycomb structure rather
than in the square lattice. This is a reasonable result, because the constant energy
surfaces in the hexagonal lattice are closer to a circular shape than those of a
square lattice. A similar conclusion has been drawn in the case of single-polarized
sound waves (transverse modes) in the 2D periodic systems of solid composites
[9].

Figures 4 and 5 address indirectly a typical question concerned with the strategy
of unwanted noise abatement: is it feasible to devise low-tech means that can
forbid the sound propagation in the human audible range of frequencies
(20 Hz–20 kHz)? This is a very important question that has become a major
concern of scientists, engineers, and architects involved in the design of the
buildings and in the planning of the cities, working together to find technically
feasible solutions to the problem of noise. Fundamental to bring about a solution
is the better understanding of sound propagation through the city streets and in
the atmosphere above the city. For such an understanding the availability of band
structures is essential. This letter is simply meant to emphasize the fundamental
issues involved in the sister subject of band-gap engineering of periodic composite
systems. Our theoretical results suggest a feasible designing of an ultrawideband
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filter for environmental or industrial noise in air (or water) according to the required
specifications.
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